Carbon Nanofibers Modified Graphite Felt for High Performance Anode in High Substrate Concentration Microbial Fuel Cells

نویسندگان

  • Youliang Shen
  • Yan Zhou
  • Shuiliang Chen
  • Fangfang Yang
  • Suqi Zheng
  • Haoqing Hou
چکیده

Carbon nanofibers modified graphite fibers (CNFs/GF) composite electrode was prepared for anode in high substrate concentration microbial fuel cells. Electrochemical tests showed that the CNFs/GF anode generated a peak current density of 2.42 mA cm(-2) at a low acetate concentration of 20 mM, which was 54% higher than that from bare GF. Increase of the acetate concentration to 80 mM, in which the peak current density of the CNFs/GF anode greatly increased and was up to 3.57 mA cm(-2), was seven times as that of GF anode. Morphology characterization revealed that the biofilms in the CNFs/GF anode were much denser than those in the bare GF. This result revealed that the nanostructure in the anode not only enhanced current generation but also could tolerate high substrate concentration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reaction mechanism on anode filled with activated carbon in microbial fuel cell

The upflow microbial fuel cell (MFC) system with membrane-free air-cathode was developed, and landfill leachate as fuel. The anode was made of stainless steel mesh filled with activated carbon, and carbon felt as the cathode. Electricity production performance of MFC with cylindrical stainless steel mesh anode filled with 0 (unfilled), 1mm, and 3mm cylindrical activated carbon particles was inv...

متن کامل

Application of dual chamber microbial fuel cell with aeration cathode for bioelectricity generation and simultaneous industrial wastewater treatment

Background and Objective: Microbial fuel cell (MFC) is a new green technology that uses the catabolic ability of microorganisms to produce bioenergy while simultaneously removing organic matter and other wastewater contaminants. Electrode material is one of the factors affecting the performance of microbial fuel cells. The aim of this study was to investigate the performance of microbial fuel c...

متن کامل

Anode modification with capacitive materials for a microbial fuel cell: an increase in transient power or stationary power.

Extensive efforts have been devoted to improve the anode performance of a microbial fuel cell (MFC) by using modified carbon-based anode materials, but most of them did not recognize that the power performance measured by the commonly-used varying circuit resistance (VCR) or linear sweep voltammetry (LSV) method was overestimated due to the effect of anode capacitance. Here, we examined and com...

متن کامل

Electrochemical Polymerization of Hydroquinone on Graphite Felt as a Pseudocapacitive Material for Application in a Microbial Fuel Cell

Here we reported the use of electropolymerization to achieve the transformation of aqueous hydroquinone to solid-phase polyhydroquinone (PHQ) with pseudocapacitive characteristics, and the application of this redox-active product to shuttle electron transfer in the anode system of a microbial fuel cell (MFC). The microscopic and spectroscopic results showed that the treatment of the graphite fe...

متن کامل

Three-dimensional carbon nanotube-textile anode for high-performance microbial fuel cells.

Microbial fuel cells (MFCs) harness the metabolism of microorganisms, converting chemical energy into electrical energy. Anode performance is an important factor limiting the power density of MFCs for practical application. Improving the anode design is thus important for enhancing the MFC performance, but only a little development has been reported. Here, we describe a biocompatible, highly co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014